Indian Monsoon 2023 & 2024 in partially coupled regional suite (ATM-KPP)

Joint Annual R&D Workshop and 6th Momentum®UK Partnership Convective Scale Workshop

9-13 September 2024 | Advancing convective scale predictions

Session 9: Regional Coupled Modelling

Coupled Model (60 km) (NCUM+JULES+NEMO+CICE)

15-Days forecast/Coupled NWP: Daily

25 Km Global Ocean NEMO/CICI
60Km UM/JULES
Atmosphere/Land-Surface

Multi-week/Extended Range: Weekly (every Thursday) -2018 onwards

Latest example: Forecast issues on 1st Dec

- Weekly Anomalies during 2nd 29th December 2022
- Model Climatology 23 years. Hindcast data used (1993-2015) from 6 members
- •This Forecast is from 16 ensemble members with IC: 27th 30th November 2022
- Plots show week-by-week anomalies and full fields and monthly mean anomalies valid for December 2022

Seasonal (Experimental Run): End of each month – started in 2020

Latest example: 24th November

- Number of Forecast members: 55
- Start dates: 12th to 22nd of each month & 5 member per start date
- Number of hindcast members: 23 years*6 per year (1993-2015)
- Hindcasts are used to defined the normal for percentage departures
- Hindcasts are used to define threshold for tercile categories for probabilistic forecasts

Regional
Coupled Suite
(RCS-Ind)
Modelling at
NCMRWWF

Regional coupled environmental model with "Ocean", "Atmosphere" and "Wave" components.

UM+JULES-> Atmosphere
 NEMO-> Ocean
WAVEWATCH III-> Waves

ATMOSPHERE & LAND SURFACE

Resolution: 4.05 km x 4.05 km,

E-W: 64.9835 E - 101.393 E,

N-S: 3.464 N, 40.0355 N

Domain Size: 900x904x80 grids

OCEAN & WAVE

Resolution: 2.2 km x 2.2 km, Wave

Model: WaveWatch III

E-W: 64.9835 E- 101.393,

N-S: 3.464 N- 26.558 N

Domain Size: 1100x1760x75 grids

Regional Coupled Model

Convective Scale Coupled Environmental Prediction System

Experiments: UNCOUPLED → PARTIALLY COUPLED → FULLY COUPLED

Tropical Storm Fani: Model Rain and OLR

Forecasts IC: 00z 28th April 2019 6-hrly forecast up to 108 Hr

FORECAST IC=00Z28April2019, 6 hour Forecast

Tropical Storm Fani: 26th April-4th May 2019

At 8:00 a.m. IST (02:30 UTC) 3 May, Fani made landfall near Puri, Odisha as an extremely severe cyclonic storm, with 3-minute sustained winds of 185 km/h (115 mph) and 1-minute sustained winds of 230 km/h (145 mph) according to IBTrACS record.

This made Fani the most intense storm to make landfall in India's Odisha state since the 1999 Odisha cyclone.

Tropical Storm Fani: Observed Track and Model forecasted MSLP

Forecasts IC: 00z 28th April 2019 6-hrly forecast up to 108 Hr

(Outgoing Longwave Radiation (OLR)) **Forecast from Model compared against Satellite observation**

NCMRWF HPC

Model was initialized at 00Z28April2019 on NCMRWF HPC,

NASA - Terra MODIS Satellite

[20190502 1657Z]

(a) ATM

(c) ATM-OCN-wa

(b) ATM-OCN

Change in Ocean Temperature (model) due to Tropical Storm Fani

Configuration	a	0	w	ak	aw	ao	aow
Nodes used	48	15	10	49	58	63	73
Runtime per day 1	17 min	20 min	5 min	18 min	18 min	20 min	22 min
Runtime per day ²	16 min	21 min		16 min		24 min	
Output per day ³ (Diagnostic)	20 Gb	25 Gb	2 Gb	25 Gb	22 Gb	45 Gb	47 Gb
Output per day ⁴ (Coupling)	0 Gb	0 Gb	$0\mathrm{Gb}$	26 Gb	10 Gb	51 Gb	71 Gb

1 Met Office HPC 2 Mihir (MoES) HPC

Geosci. Model Dev., 15, 4193-4223, 2022

First attempt to install the Regional Coupled Suite (RCS) coupled suite on NCMRWF HPC was done in March 2020. Initial test results were compared with those of UKMO.

MoES-UKMO Joint study was communicated to GMD, work is published in June 2022.

Work continues to further fine-tune the RCS

https://doi.org/10.5194/gmd-15-4193-2022

https://doi.org/10.5194/gmd-15-4193-2022

Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

The Regional Coupled Suite (RCS-IND1): application of a flexible regional coupled modelling framework to the Indian region at kilometre scale

Juan Manuel Castillo¹, Huw W. Lewis¹, Akhilesh Mishra², Ashis Mitra², Jeff Polton³, Ashley Brereton³, Andrew Saulter¹, Alex Arnold¹, Segolene Berthou¹, Douglas Clark⁴, Julia Crook⁵, Ananda Das⁶, John Edwards¹, Xiangbo Feng⁷, Ankur Gupta², Sudheer Joseph⁸, Nicholas Klingaman⁷, Imranali Momin², Christine Pequignet¹, Claudio Sanchez¹, Jennifer Saxby⁵, and Maria Valdivieso da Costa⁷

Correspondence: Juan Manuel Castillo (juan.m.castillo@metoffice.gov.uk)

Received: 10 January 2022 – Discussion started: 27 January 2022 Revised: 22 April 2022 – Accepted: 5 May 2022 – Published: 1 June 2022

¹Met Office, Exeter, EX1 3PB, UK

²National Centre for Medium Range Weather Forecasting (NCMRWF), Noida, India

³National Oceanography Centre, Liverpool, UK

⁴UK Centre of Ecology & Hydrology (UKCEH), Wallingford, UK

⁵School of Earth and Environment, University of Leeds, Leeds, UK

⁶India Meteorological Department (IMD), Delhi, India

⁷Department of Meteorology, University of Reading, Reading, UK

⁸Indian National Centre for Ocean Information Services (INCOIS), Hyderabad, India

Figure 2.27: Schematic showing the time evolution of the computer processing speed along with decreasing spatial resolution of the NWP models at NCMRWF.

ATMOSPHERE/LAND IND1a

Experiment options:

Default: fixed global NWP SST

o: OSTIA SST updated daily

h: INDo SST updated hourly

MetUM vn11.1 JULES vn5.2 **OCEAN-ONLY**

Experiment options:

e: ERA5 core forcing

g: global NWP flux forcing

h: INDa hourly flux forcing

IND1o

WAVE-ONLY

IND1w

1 CM/RW

Experiment options:

g: global NWP flux forcing

h: INDa hourly flux forcing

gc or hc: with INDo currents

WWIII vn4.18

PARTIALLY COUPLED

AO IND1ao

PARTIALLY COUPLED

IND1aw

[options: o, h, c]

PARTIALLY COUPLED OW IND1ow

[options g, h]

Source: MetOffice

PARTIALLY COUPLED (KPP) **KPP** IND1ak

Schematic summary of RCS-IND1 modelling framework configuration, experiment options and naming conventions.

OFFICIAL

Monsoon & Tropical Cyclone Case Studies 2023/2024

Near Real Time Forecast using Regional Coupled Suite's ATM & ATM-Kpp

- 1. Experiments with and without KPP Mixed Layer (UM 12.1)
- 2. RA2T Experiments (both)
- 3. Forced with NCUM-G forecast
- 4. Atmospheric Initialization with NCMRWF UM Global Analysis
- 5. KPP Initialized using NCMRWF NEMO-ORCA25 Analysis
- 6. Daily runs with 00Z IC
- 7. RAL3 experiments going on

48 hr. total rain forecast (mm) valid at 00Z on 3 AUG 2024, IC:00Z20240801

Summary

- ✓ Regional ocean-atmosphere-wave coupled model with 4 Km atmosphere and 2.2 Km ocean & wave model is installed at NCMRWF.
- ✓ Atmosphere in coupled suite is initialized with NCMRWF Analysis.
- ✓ Plans are underway to initialize regional NEMO using NEMO/ORCA25 Analysis produced at NCMRWF regularly
- ✓ Suite upgradation to RAL3 is done.
- ✓ Successfully nested in NCMRWF extended range prediction system.

On the Cards (Future)

- ➤ Regional Coupled Environmental Forecast System Regional Climate for BIMSTEC Center For Weather and Climate (BCWC)
- > RAL3 experiments with Monsoon

